X^2+x^2=165^2

Simple and best practice solution for X^2+x^2=165^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+x^2=165^2 equation:



X^2+X^2=165^2
We move all terms to the left:
X^2+X^2-(165^2)=0
We add all the numbers together, and all the variables
2X^2-27225=0
a = 2; b = 0; c = -27225;
Δ = b2-4ac
Δ = 02-4·2·(-27225)
Δ = 217800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{217800}=\sqrt{108900*2}=\sqrt{108900}*\sqrt{2}=330\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-330\sqrt{2}}{2*2}=\frac{0-330\sqrt{2}}{4} =-\frac{330\sqrt{2}}{4} =-\frac{165\sqrt{2}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+330\sqrt{2}}{2*2}=\frac{0+330\sqrt{2}}{4} =\frac{330\sqrt{2}}{4} =\frac{165\sqrt{2}}{2} $

See similar equations:

| 3y+38=8 | | x+3-2x=6-5x+2 | | 24.5=-2.5c–4c | | 5m+7=2m-6 | | Y1=-3x | | p/2+9=11 | | 4x–7=2x–8 | | 9x+10=8x= | | 12m+3(m-1)=-2(m+1)+16 | | x+2/5=x+3/3 | | 9x/18+10/18=8x/18= | | 6×n-10=20 | | 3x+1=5x–19 | | -9+5x+7=3x–18 | | 9^(5x)=1024 | | 2x=28/7 | | Y=25x+-75 | | 1/231x+3=192 | | 5.1=-5u+17.6 | | 8x-7=5x=23 | | 2x+9x=3x+4x | | 100(1+x)^2=200 | | .1/6x=1.67 | | 9m+5=104 | | -7-6(1-6k)=13-4k | | m+6/4=1 | | 7x2+2x-1=0 | | 65°+x=180° | | (2s+3)(s+4)=288 | | 0=m-9m | | t/7-14=2 | | .1/6x=5/3 |

Equations solver categories